No. 1 metropolitan quantum internet of UESTC. (IMAGE)
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
Caption
a, Aerial view of the teleportation system. Alice ‘A’ is located at network’s switching room, Bob ‘B’ and Charlie ‘C’ are located at two separated laboratories. All fibers connecting the three nodes belong to the UESTC backbone network. During the experiment, only the signals created by Alice, Bob and Charlie are transferred through these ‘dark’ fibers. b, Scheme of the teleportation system. Alice prepares the initial state with a weak coherent single-photon source and sends it to Charlie through a quantum channel. An entanglement source at Bob generates a pair of entangled photons and then sends the idler photon to Charlie via another quantum channel The signal photon is stored in a fiber spool. Charlie implements a joint Bell-state measurement (BSM) between the qubit sent by Alice and Bob, projecting them onto one of the four Bell states. Then the BSM result is sent to Bob via a classical channel, who performs a unitary (U) transformation on the signal photon to recover the initial state.
Credit
by Si Shen, Chenzhi Yuan, Zichang Zhang, Hao Yu, Ruiming Zhang, Chuanrong Yang, Hao Li, Zhen Wang, You Wang, Guangwei Deng, Haizhi Song, Lixing You, Yunru Fan, Guangcan Guo and Qiang Zhou
Usage Restrictions
Credit must be given to the creator.
Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.